Cortex includes a default set of Docker images with pre-installed Python and system packages but you can build custom images for use in your APIs. Common reasons to do this are to avoid installing dependencies during replica initialization, to have smaller images, and/or to mirror images to your ECR registry (for speed and reliability).
mkdir my-api && cd my-api && touch Dockerfile
Cortex's base Docker images are listed below. Depending on the Cortex Handler and compute type specified in your API configuration, choose one of these images to use as the base for your Docker image:
Python Handler (CPU): quay.io/cortexlabs/python-handler-cpu:0.35.0
Python Handler (GPU): choose one of the following:
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda10.0-cudnn7
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda10.1-cudnn7
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda10.1-cudnn8
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda10.2-cudnn7
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda10.2-cudnn8
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda11.0-cudnn8
quay.io/cortexlabs/python-handler-gpu:0.35.0-cuda11.1-cudnn8
Python Handler (Inferentia): quay.io/cortexlabs/python-handler-inf:0.35.0
TensorFlow Handler (CPU, GPU, Inferentia): quay.io/cortexlabs/tensorflow-handler:0.35.0
The sample Dockerfile below inherits from Cortex's Python CPU serving image, and installs 3 packages. tree is a system package and pandas and rdkit are Python packages.
# Dockerfile​FROM quay.io/cortexlabs/python-handler-cpu:0.35.0​RUN apt-get update \&& apt-get install -y tree \&& apt-get clean && rm -rf /var/lib/apt/lists/*​RUN pip install --no-cache-dir pandas \&& conda install -y conda-forge::rdkit \&& conda clean -a
If you need to upgrade the Python Runtime version on your image, you can follow this procedure:
# Dockerfile​FROM quay.io/cortexlabs/python-handler-cpu:0.35.0​# upgrade python runtime versionRUN conda update -n base -c defaults condaRUN conda install -n env python=3.8.5​# re-install cortex core dependenciesRUN /usr/local/cortex/install-core-dependencies.sh​# ...
docker build . -t org/my-api:latest
You can push your built Docker image to a public registry of your choice (e.g. Docker Hub), or to a private registry on ECR or Docker Hub.
For example, to use ECR, first create a repository to store your image:
# We create a repository in ECR​export AWS_REGION="***"export REGISTRY_URL="***" # this will be in the format "<aws_account_id>.dkr.ecr.<aws_region>.amazonaws.com"​aws ecr get-login-password --region $AWS_REGION | docker login --username AWS --password-stdin $REGISTRY_URL​aws ecr create-repository --repository-name=org/my-api --region=$AWS_REGION# take note of repository url
Build and tag your image, and push it to your ECR repository:
docker build . -t org/my-api:latest -t <repository_url>:latest​docker push <repository_url>:latest
# cortex.yaml​- name: my-api...handler:image: <repository_url>:latest...
Note: for TensorFlow Handlers, two containers run together to serve requests: one runs your Handler code (quay.io/cortexlabs/tensorflow-handler), and the other is TensorFlow serving to load the SavedModel (quay.io/cortexlabs/tensorflow-serving-gpu or quay.io/cortexlabs/tensorflow-serving-cpu). There's a second available field tensorflow_serving_image that can be used to override the TensorFlow Serving image. Both of the default serving images (quay.io/cortexlabs/tensorflow-serving-gpu and quay.io/cortexlabs/tensorflow-serving-cpu) are based on the official TensorFlow Serving image (tensorflow/serving). Unless a different version of TensorFlow Serving is required, the TensorFlow Serving image shouldn't have to be overridden, since it's only used to load the SavedModel and does not run your Handler code.