- name: <string>kind: AsyncAPIpredictor: # detailed configuration belowcompute: # detailed configuration belowautoscaling: # detailed configuration belowupdate_strategy: # detailed configuration belownetworking: # detailed configuration below
predictor:type: pythonpath: <string> # path to a python file with a PythonPredictor class definition, relative to the Cortex root (required)dependencies: # (optional)pip: <string> # relative path to requirements.txt (default: requirements.txt)conda: <string> # relative path to conda-packages.txt (default: conda-packages.txt)shell: <string> # relative path to a shell script for system package installation (default: dependencies.sh)config: <string: value> # arbitrary dictionary passed to the constructor of the Predictor (optional)python_path: <string> # path to the root of your Python folder that will be appended to PYTHONPATH (default: folder containing cortex.yaml)image: <string> # docker image to use for the Predictor (default: quay.io/cortexlabs/python-predictor-cpu:0.33.0, quay.io/cortexlabs/python-predictor-gpu:0.33.0-cuda10.2-cudnn8, or quay.io/cortexlabs/python-predictor-inf:0.33.0 based on compute)env: <string: string> # dictionary of environment variableslog_level: <string> # log level that can be "debug", "info", "warning" or "error" (default: "info")shm_size: <string> # size of shared memory (/dev/shm) for sharing data between multiple processes, e.g. 64Mi or 1Gi (default: Null)
predictor:type: tensorflowpath: <string> # path to a python file with a TensorFlowPredictor class definition, relative to the Cortex root (required)dependencies: # (optional)pip: <string> # relative path to requirements.txt (default: requirements.txt)conda: <string> # relative path to conda-packages.txt (default: conda-packages.txt)shell: <string> # relative path to a shell script for system package installation (default: dependencies.sh)models: # (required)path: <string> # S3 path to an exported SavedModel directory (e.g. s3://my-bucket/exported_model/) (either this, 'dir', or 'paths' must be provided)signature_key: # name of the signature def to use for prediction (required if your model has more than one signature def)config: <string: value> # arbitrary dictionary passed to the constructor of the Predictor (optional)python_path: <string> # path to the root of your Python folder that will be appended to PYTHONPATH (default: folder containing cortex.yaml)image: <string> # docker image to use for the Predictor (default: quay.io/cortexlabs/tensorflow-predictor:0.33.0)tensorflow_serving_image: <string> # docker image to use for the TensorFlow Serving container (default: quay.io/cortexlabs/tensorflow-serving-cpu:0.33.0, quay.io/cortexlabs/tensorflow-serving-gpu:0.33.0, or quay.io/cortexlabs/tensorflow-serving-inf:0.33.0 based on compute)env: <string: string> # dictionary of environment variableslog_level: <string> # log level that can be "debug", "info", "warning" or "error" (default: "info")shm_size: <string> # size of shared memory (/dev/shm) for sharing data between multiple processes, e.g. 64Mi or 1Gi (default: Null)
compute:cpu: <string | int | float> # CPU request per replica. One unit of CPU corresponds to one virtual CPU; fractional requests are allowed, and can be specified as a floating point number or via the "m" suffix (default: 200m)gpu: <int> # GPU request per replica. One unit of GPU corresponds to one virtual GPU (default: 0)mem: <string> # memory request per replica. One unit of memory is one byte and can be expressed as an integer or by using one of these suffixes: K, M, G, T (or their power-of two counterparts: Ki, Mi, Gi, Ti) (default: Null)
autoscaling:min_replicas: <int> # minimum number of replicas (default: 1)max_replicas: <int> # maximum number of replicas (default: 100)init_replicas: <int> # initial number of replicas (default: <min_replicas>)max_replica_concurrency: <int> # the maximum number of in-flight requests per replica before requests are rejected with error code 503 (default: 1024)target_replica_concurrency: <float> # the desired number of in-flight requests per replica, which the autoscaler tries to maintain (default: processes_per_replica * threads_per_process)window: <duration> # the time over which to average the API's concurrency (default: 60s)downscale_stabilization_period: <duration> # the API will not scale below the highest recommendation made during this period (default: 5m)upscale_stabilization_period: <duration> # the API will not scale above the lowest recommendation made during this period (default: 1m)max_downscale_factor: <float> # the maximum factor by which to scale down the API on a single scaling event (default: 0.75)max_upscale_factor: <float> # the maximum factor by which to scale up the API on a single scaling event (default: 1.5)downscale_tolerance: <float> # any recommendation falling within this factor below the current number of replicas will not trigger a scale down event (default: 0.05)upscale_tolerance: <float> # any recommendation falling within this factor above the current number of replicas will not trigger a scale up event (default: 0.05)
update_strategy:max_surge: <string | int> # maximum number of replicas that can be scheduled above the desired number of replicas during an update; can be an absolute number, e.g. 5, or a percentage of desired replicas, e.g. 10% (default: 25%) (set to 0 to disable rolling updates)max_unavailable: <string | int> # maximum number of replicas that can be unavailable during an update; can be an absolute number, e.g. 5, or a percentage of desired replicas, e.g. 10% (default: 25%)
networking:endpoint: <string> # the endpoint for the API (default: <api_name>)