An estimator defines how to train a model.
Custom estimators can be implemented in Python or PySpark. See the implementation docs for a detailed guide.
- kind: estimatorname: <string> # estimator name (required)path: <string> # path to the implementation file, relative to the cortex root (default: implementations/estimators/<name>.py)target_column: <column_type> # The type of column that can be used as a target (ambiguous types like INT_COLUMN|FLOAT_COLUMN are supported) (required)input: <input_type> # the input type of the estimator (required)training_input: <input_type> # the input type of the training input to the estimator (optional)hparams: <input_type> # the input type of the hyperparameters to pass into the estimator, which may not contain column types (optional)prediction_key: <string> # key of the target value in the estimator's exported predict outputs (default: "class_ids" for INT_COLUMN and STRING_COLUMN targets, "predictions" otherwise)
See Data Types for details about input types.
- kind: estimatorname: dnn_classifierpath: dnn_classifier.pytarget_column: INT_COLUMNinput:num_classes: INTnumeric_columns: [INT_COLUMN|FLOAT_COLUMN]hparams:hidden_units: [INT]
Cortex includes common estimators that can be used out of the box (see estimators.yaml). To use built-in estimators, use the cortex namespace in the estimator name (e.g. cortex.dnn_classifier).